Laminar Differences in Dendritic Structure of Pyramidal Neurons in the Juvenile Rat Somatosensory Cortex
نویسندگان
چکیده
Pyramidal cell structure varies between different cortical areas and species, indicating that the cortical circuits that these cells participate in are likely to be characterized by different functional capabilities. Structural differences between cortical layers have been traditionally reported using either the Golgi method or intracellular labeling, but the structure of pyramidal cells has not previously been systematically analyzed across all cortical layers at a particular age. In the present study, we investigated the dendritic architecture of complete basal arbors of pyramidal neurons in layers II, III, IV, Va, Vb, and VI of the hindlimb somatosensory cortical region of postnatal day 14 rats. We found that the characteristics of basal dendritic morphologies are statistically different in each cortical layer. The variations in size and branching pattern that exist between pyramidal cells of different cortical layers probably reflect the particular functional properties that are characteristic of the cortical circuit in which they participate. This new set of complete basal dendritic arbors of 3D-reconstructed pyramidal cell morphologies across each cortical layer will provide new insights into interlaminar information processing in the cerebral cortex.
منابع مشابه
Dendritic branching angles of pyramidal cells across layers of the juvenile rat somatosensory cortex.
The characterization of the structural design of cortical microcircuits is essential for understanding how they contribute to function in both health and disease. Since pyramidal neurons represent the most abundant neuronal type and their dendritic spines constitute the major postsynaptic elements of cortical excitatory synapses, our understanding of the synaptic organization of the neocortex l...
متن کاملWiring Economy of Pyramidal Cells in the Juvenile Rat Somatosensory Cortex
Ever since Cajal hypothesized that the structure of neurons is designed in such a way as to save space, time and matter, numerous researchers have analyzed wiring properties at different scales of brain organization. Here we test the hypothesis that individual pyramidal cells, the most abundant type of neuron in the cerebral cortex, optimize brain connectivity in terms of wiring length. In this...
متن کاملThe Time Window for Generation of Dendritic Spikes by Coincidence of Action Potentials and EPSPs is Layer Specific in Somatosensory Cortex
The precise timing of events in the brain has consequences for intracellular processes, synaptic plasticity, integration and network behaviour. Pyramidal neurons, the most widespread excitatory neuron of the neocortex have multiple spike initiation zones, which interact via dendritic and somatic spikes actively propagating in all directions within the dendritic tree. For these neurons, therefor...
متن کاملMonosynaptic connections between pairs of L5A pyramidal neurons in columns of juvenile rat somatosensory cortex.
Layer 5 (L5) of somatosensory cortex is a major gateway for projections to intra- and subcortical brain regions. This layer is further divided into 5A and 5B characterized by relatively separate afferent and efferent connections. Little is known about the organization of connections within L5A of neocortical columns. We therefore used paired recordings to probe the anatomy and physiology of mon...
متن کاملCell Type–Specific Thalamic Innervation in a Column of Rat Vibrissal Cortex
This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the n...
متن کامل